Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fengying Xu, Zihui Chen, Fushi Zhang,* Ru-Ji Wang and Fuqun Zhao

Key Laboratory of Organic Optoelectronics \& Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
zhangfs@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.049$
$w R$ factor $=0.098$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-Bromo-5-methylthiophen-2-yl)pyridine

The title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNS}$, is used as a precursor to diarylethene derivatives. The dihedral angle between the thiophene and pyridine rings is $4.9(1)^{\circ}$, and there is evidence for conjugation throughout the molecule. The structure is stabilized by $\pi-\pi$ stacking interactions down the c axis.

Comment

Photochromic diarylethenes are among the most promising materials for optical memories and other optoelectronic devices (Irie, 2000). The title compound, (I), can be used to produce 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]perfluorocyclopentene and other photochromic diarylethene derivatives (Nakashima et al., 1996; Alvaro \& Lehn, 1999; Sasai et al., 2000; Matsuda et al., 2004). The dihedral angle between the pyridine and thiophene ring planes is $4.9(1)^{\circ}\left[5.2(1)^{\circ}\right.$ if the thiophene ring is extended to include the Br and methyl C atoms], suggesting a considerable degree of conjugation throughout the molecule.

(I)

Compound (I) can be compared to the structure of the related compound 1,2-bis[5-(4-pyridyl)-3-thienyl]perfluorocyclopentene [(A); Matsuda et al., 2001]. This system contains two discrete 4-pyridylthienyl groups linked through a cyclopentene ring and crystallizes with two molecules in the asymmetric unit. The C1-C6 bond in (I) $[1.456$ (6) \AA] is shorter than the equivalent bonds in (A) [1.463 (4), 1.469 (4), 1.470 (4) and 1.478 (4) \AA]. Furthermore, the dihedral angles between the pyridine and thiophene rings in (A) range from 3.8 (1) to $27.8(1)^{\circ}$, suggesting that steric interactions within and between the molecules of (A) may be of greater importance than for (I). The structure is stabilized by columnar $\pi-\pi$ stacking interactions down the c axis. The distance between molecular planes in the columns is 3.426 (5) \AA, with adjacent molecules stacked in an obverse fashion (Fig. 2).

Experimental

The title compound was prepared according to the procedure of Gilat et al. (1993). Crystals were obtained by evaporation of a solution in chloroform. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.59(d, 2 \mathrm{H}), 7.41(d, 1 \mathrm{H}), 7.39(d$, $1 \mathrm{H}), 7.32(s, 1 \mathrm{H}), 2.45(s, 3 \mathrm{H})$.

Received 29 March 2005
Accepted 4 May 2005
Online 14 May 2005

Figure 1
View of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms are represented by circles of arbitrary radius.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNS}$

$M_{r}=254.14$
Orthorhombic, Pbca
$a=12.726$ (4) \AA
$b=11.629$ (4) \AA
$c=13.705$ (5) \AA
$V=2028.3(11) \AA^{3}$
$Z=8$
$D_{x}=1.665 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker $P 4$ diffractometer ω scans
Absorption correction: multi-scan (North et al., 1968)
$T_{\text {min }}=0.217, T_{\text {max }}=0.283$
2321 measured reflections
1776 independent reflections 1028 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation

Cell parameters from 47 reflections
$\theta=5.1-12.5^{\circ}$
$\mu=4.21 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, yellow
$0.4 \times 0.4 \times 0.3 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.098$
$S=1.04$
1776 reflections
119 parameters
H -atom parameters constrained

Figure 2
A view, down the c axis, of the molecular packing of (I). H atoms have been omitted.

All H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl C atoms.

Data collection: XSCANS (Bruker, 1997); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful for support by the National 863 Project (No. G2003AA311131) and National Natural Science Key Foundation of China (No. 20333080).

References

Alvaro, F. A. \& Lehn, J.-M. (1999). Chem. Eur. J. 5, 3285-3292.
Bruker (1997). XSCANS (Version 2.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Gilat, S. L., Kawai, S. H. \& Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun. pp. 1439-1442.
Irie, M. (2000). Chem. Rev. 100, 1685-1716.
Matsuda, K., Takayama, K. \& Irie, M. (2001). Chem. Commun. pp. 363-364.
Matsuda, K., Takayama, K. \& Irie, M. (2004). Inorg. Chem. 43, 482-489.
Nakashima, N., Deguchi, Y. \& Irie, M. (1996). Chem. Lett. 25, 817-818.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sasai, R., Ogiso, H., Shindachi, I., Shichi, T. \& Takagi, K. (2000). Tetrahedron, 56, 6979-6984.

